EE523 Convex optimization
Total Study flow of this course

$$ \begin{align}\min_{x} \quad & w^T x + x^T Q x \\\text{subject to} \quad & Ax - b \leq 0 \\& Cx - e = 0\end{align} $$
which Q matrix is PSD condition.
A symmetric matrix Q is “positive semi-definite” if $v^TQv\geq 0 \hspace{3mm} \forall v\in \real^d$
$$ v^TQv\geq 0 \hspace{3mm} \forall v\in \real^d $$
위 조건은 All the eigenvalue’s of Q matrix are non-negative와 동치!
which is eigenvalue decomposition.
Convexity 를 보이는 방법은 3가지